Message d'état

PURL test ID: finland

Arabic Speech Recognition Independent of Vocabulary for Isolated Words

TitreArabic Speech Recognition Independent of Vocabulary for Isolated Words
Publication TypeJournal Article
Year of Publication2022
AuthorsBoumehdi, A, Yousfi, A
JournalLecture Notes in Networks and Systems
Volume216
Pagination585-595
Abstract

This paper presents a vocabulary-independent speech recognition model of isolated Arabic words. This approach uses a restricted dictionary of syllables and phonemes, and it is based on the hidden Markov model (HMM). The main objective of this contribution is to remedy the problem of insufficient vocabularies in automatic speech recognition systems. This new model has made it possible to recognize any given word even if it has never been pronounced. The model gives a very considerable recognition rate comparable to the limited vocabulary speech recognition system of isolated words. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85115620047&doi=10.1007%2f978-981-16-1781-2_52&partnerID=40&md5=cf0f1f63d198575b4713769dc56f1701
DOI10.1007/978-981-16-1781-2_52
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:640,014
    Education - This is a contributing Drupal Theme
    Design by WeebPal.