Message d'état

PURL test ID: finland

Automatic sign language recognition: A survey

TitreAutomatic sign language recognition: A survey
Publication TypeConference Paper
Year of Publication2017
AuthorsEr-Rady, A, Faizi, R, Thami, ROH, Housni, H
Conference NameProceedings - 3rd International Conference on Advanced Technologies for Signal and Image Processing, ATSIP 2017
Abstract

Sign Language, which is a fully visual language with its own grammar, differs largely from that of spoken languages [21]. After nearly 30 years of research, SL recognition still in its infancy when compared to Automatic Speech Recognition. When producing Sign language (SL), different body parts are involved. Most importantly the hands, but also facial expressions and body movements/postures. The recognition of SL is still one of the most challenging problems in gesture recognition. In this survey, we are going to discuss the advancement of sign language recognition through the last decade. In this paper, we provide a review of the state-of-the-art building blocks of Automatic Sign Language Recognition (ASLR) system, from feature extraction up to sign. © 2017 IEEE.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85035355057&doi=10.1109%2fATSIP.2017.8075561&partnerID=40&md5=2dda585a2de8f963b1f1f0cc678e01d3
DOI10.1109/ATSIP.2017.8075561
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:641,428
    Education - This is a contributing Drupal Theme
    Design by WeebPal.