Message d'état

PURL test ID: finland

Comparison of color imaging vs. hyperspectral imaging for texture classification

TitreComparison of color imaging vs. hyperspectral imaging for texture classification
Publication TypeJournal Article
Year of Publication2022
AuthorsPorebski, A, Alimoussa, M, Vandenbroucke, N
JournalPattern Recognition Letters
Volume161
Pagination115-121
Mots-clésChannel representation, Classification (of information), Color, Color channels, Color imaging, Deep learning, Features selection, Hyperspectral imaging, Image texture, Multi-colors, Multi-spectral, Spectral band, Spectroscopy, Texture classification, Texture descriptors, Texture representation, Textures
Abstract

Many approaches of texture analysis by color or hyperspectral imaging are based on the assumption that the image of a texture can be viewed as a multi-component image, where spatial interactions within and between components are jointly considered (opponent component approach) or not (marginal approach). When color images are coded in multiple color spaces, texture descriptors are based on Multi Color Channel (MCC) representations. By extension, a Multi Spectral Band (MSB) representation can be used to characterize the texture of material surfaces in hyperspectral images. MSB and MCC representations are compared in this paper for texture classification issues. The contribution of each representation is investigated with marginal and/or opponent component strategies. For this purpose, several relevant texture descriptors are considered. Since MSB and MCC representations generate high-dimensional feature spaces, a dimensionality reduction is applied to avoid the curse of dimensionality. Experimental results carried out on three hyperspectral texture databases (HyTexiLa, SpecTex and an original dataset extracted from the Timbers database) show that considering between component interactions in addition to the within ones significantly improves the classification accuracies. The proposed approaches allow also to outperform state of the art hand-designed descriptors and color texture descriptors based on deep learning networks. This study highlights the contribution of hyperspectral imaging compared to color imaging for texture classification purposes but also the advantages of color imaging depending on the considered texture representation. © 2022

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85135883794&doi=10.1016%2fj.patrec.2022.08.001&partnerID=40&md5=e0ae6847684c79691a71e29e7b2c273b
DOI10.1016/j.patrec.2022.08.001
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:640,014
    Education - This is a contributing Drupal Theme
    Design by WeebPal.