Message d'état

PURL test ID: finland

Emotionally-Informed Models for Detecting Moments of Change and Suicide Risk Levels in Longitudinal Social Media Data

TitreEmotionally-Informed Models for Detecting Moments of Change and Suicide Risk Levels in Longitudinal Social Media Data
Publication TypeConference Paper
Year of Publication2022
AuthorsBayram, U, Benhiba, L
Conference NameCLPsych 2022 - 8th Workshop on Computational Linguistics and Clinical Psychology, Proceedings
Mots-clésAuto encoders, Emotion Recognition, Learning systems, Logistics regressions, Long short-term memory, Machine learning models, Mental health, N-grams, Participating teams, Risk assessment, Risk levels, Sentiment scores, Social media datum, Social networking (online)
Abstract

In this shared task, we focus on detecting mental health signals in Reddit users’ posts through two main challenges: A) capturing mood changes (anomalies) from the longitudinal set of posts (called timelines), and B) assessing the users’ suicide risk-levels. Our approaches leverage emotion recognition on linguistic content by computing emotion/sentiment scores using pre-trained BERTs on users’ posts and feeding them to machine learning models, including XGBoost, Bi-LSTM, and logistic regression. For Task-A, we detect longitudinal anomalies using a sequence-to-sequence (seq2seq) autoencoder and capture regions of mood deviations. For Task-B, our two models utilize the BERT emotion/sentiment scores. The first computes emotion bandwidths and merges them with n-gram features, and employs logistic regression to detect users’ suicide risk levels. The second model predicts suicide risk on the timeline level using a Bi-LSTM on Task-A results and sentiment scores. Our results outperformed most participating teams and ranked in the top three in Task-A. In Task-B, our methods surpass all others and return the best macro and micro F1 scores. © 2022 Association for Computational Linguistics.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85137975576&partnerID=40&md5=3326dfc2470d3574a556dc3a88778a91
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:640,159
    Education - This is a contributing Drupal Theme
    Design by WeebPal.