Message d'état

PURL test ID: finland

Machine Learning Algorithms Evaluation for Phishing URLs Classification

TitreMachine Learning Algorithms Evaluation for Phishing URLs Classification
Publication TypeConference Paper
Year of Publication2021
AuthorsBouijij, H, Berqia, A
Conference Name2021 4th International Symposium on Advanced Electrical and Communication Technologies, ISAECT 2021
Mots-clésAccuracy metric, Adaptive boosting, Algorithm evaluation, Computational linguistics, Computer crime, Cyber security, Cyber-attacks, Cybersecurity, Decision trees, Feature, Lexical analysis, Logistic regression, Machine learning algorithms, Phishing, Phishing-URL, Random forests, Support vector machines
Abstract

Phishing URL is a type of cyberattack, based on falsified URLs. The number of phishing URL attacks continues to increase despite cybersecurity efforts. According to the Anti-Phishing Working Group (APWG), the number of phishing websites observed in 2020 is 1 520 832, doubling over the course of a year. Various algorithms, techniques and methods can be used to build models for phishing URL detection and classification. From our reading, we observed that Machine Learning (ML) is one of the recent approaches used to detect and classify phishing URL in an efficient and proactive way. In this paper, we evaluate eleven of the most adopted ML algorithms such as Decision Tree (DT), Nearest Neighbours (KNN), Gradient Boosting (GB), Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), Support Vector Machines (SVM), Neural Network (NN), Ex-tra_Tree (ET), Ada_Boost (AB) and Bagging (B). To do that, we compute detection accuracy metric for each algorithm and we use lexical analysis to extract the URL features. © 2021 IEEE.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124953329&doi=10.1109%2fISAECT53699.2021.9668489&partnerID=40&md5=6054cb867f24686cb4af1bf450094608
DOI10.1109/ISAECT53699.2021.9668489
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:640,798
    Education - This is a contributing Drupal Theme
    Design by WeebPal.