Message d'état

PURL test ID: finland

Tifinagh handwritten character recognition using optimized convolutional neural network

TitreTifinagh handwritten character recognition using optimized convolutional neural network
Publication TypeJournal Article
Year of Publication2022
AuthorsNiharmine, L, Outtaj, B, Azouaoui, A
JournalInternational Journal of Electrical and Computer Engineering
Volume12
Pagination4164-4171
Abstract

Tifinagh handwritten character recognition has been a challenging problem due to the similarity and variability of its alphabets. This paper proposes an optimized convolutional neural network (CNN) architecture for handwritten character recognition. The suggested model of CNN has a multi-layer feedforward neural network that gets features and properties directly from the input data images. It is based on the newest deep learning open-source Keras Python library. The novelty of the model is to optimize the optical character recognition (OCR) system in order to obtain best performance results in terms of accuracy and execution time. The new optical character recognition system is tested on a customized dataset generated from the amazigh handwritten character database. Experimental results show a good accuracy of the system (99.27%) with an optimal execution time of the classification compared to the previous works. © 2022 Institute of Advanced Engineering and Science. All rights reserved.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85129672744&doi=10.11591%2fijece.v12i4.pp4164-4171&partnerID=40&md5=052fc4046f2fd3194e9d1315bb43dc05
DOI10.11591/ijece.v12i4.pp4164-4171
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:640,159
    Education - This is a contributing Drupal Theme
    Design by WeebPal.