Publications

Export 2330 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Z. Lakhili, A. Alami, E., Mesbah, A., Berrahou, A., et Qjidaa, H., « Deformable 3D Shape Classification Using 3D Racah Moments and Deep Neural Networks », in Procedia Computer Science, 2019, vol. 148, p. 12-20.
Ya Saissi, Zellou, Aab, et Idri, Aac, « Deep web integration: The tip of the iceberg », International Review on Computers and Software, vol. 10, p. 1044-1053, 2015.
E. O. Alaoui, Zerouaoui, H., et Idri, A., « Deep Stacked Ensemble for Breast Cancer Diagnosis », Lecture Notes in Networks and Systems, vol. 468 LNNS, p. 435-445, 2022.
Y. Fenjiro et Benbrahim, H., « Deep reinforcement learning overview of the state of the art », Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 12, p. 20-39, 2018.
A. Abouaomar, Mlika, Z., Filali, A., Cherkaoui, S., et Kobbane, A., « A deep reinforcement learning approach for service migration in MEC-enabled vehicular networks », in Proceedings - Conference on Local Computer Networks, LCN, 2021, vol. 2021-October, p. 273-280.
I. Elaalyani et Erradi, M., « Deep Neural Networks for Medical Images », in Networked Systems, NETYS 2016, 2016, vol. 9944, p. 382.
E. T. Idrissi et Idri, A., « Deep Learning for Blood Glucose Prediction: CNN vs LSTM », Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12250 LNCS, p. 379-393, 2020.
K. A. Al Afandy, Omara, H., Lazaar, M., et M. Achhab, A., Deep learning. 2022, p. 127-166.
C. Lahmar et Idri, A., « Deep hybrid architectures for diabetic retinopathy classification », Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2022.
H. Zerouaoui et Idri, A., « Deep hybrid architectures for binary classification of medical breast cancer images », Biomedical Signal Processing and Control, vol. 71, 2022.
F. - Z. Nakach, Zerouaoui, H., et Idri, A., « Deep Hybrid AdaBoost Ensembles for Histopathological Breast Cancer Classification », Lecture Notes in Networks and Systems, vol. 468 LNNS, p. 446-455, 2022.
A. Oussidi et Elhassouny, A., « Deep generative models: Survey », in 2018 International Conference on Intelligent Systems and Computer Vision, ISCV 2018, 2018, vol. 2018-May, p. 1-8.
H. Benbriqa, Abnane, I., Idri, A., et Tabiti, K., « Deep and Ensemble Learning Based Land Use and Land Cover Classification », Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12951 LNCS, p. 588-604, 2021.
Y. Laghouaouta, Anwar, A., Nassar, M., et Coulette, B., « A dedicated approach for model composition traceability », Information and Software Technology, vol. 91, p. 142-159, 2017.
H. Berbia, Belkasmi, M., Elbouanani, F., et Ayoub, F., « On the decoding of convolutional codes using genetic algorithms », in Proceedings of the International Conference on Computer and Communication Engineering 2008, ICCCE08: Global Links for Human Development, 2008, p. 667-671.
S. Nouh, Chana, I., et Belkasmi, M., « Decoding of block codes by using genetic algorithms and permutations set », International Journal of Communication Networks and Information Security, vol. 5, p. 201-209, 2013.
E. M. Haloui et Kriouile, A., « A decision-support model enabling a proactive vision of Cloud Computing adoption », in Proceedings of 2016 International Conference on Cloud Computing Technologies and Applications, CloudTech 2016, 2017, p. 192-198.
S. Lhazmir, Oualhaj, O. Ait, Kobbane, A., et Mokdad, L., « A decision-making analysis in UAV-enabled wireless power transfer for IoT networks », Simulation Modelling Practice and Theory, vol. 103, p. 102102, 2020.
S. Lhazmir, Oualhaj, O. A., Kobbane, A., et Mokdad, L., « A decision-making analysis in UAV-enabled wireless power transfer for IoT networks », Simulation Modelling Practice and Theory, vol. 103, 2020.
I. Kadi et Idri, A., « A decision tree-based approach for cardiovascular dysautonomias diagnosis: A case study », in Proceedings - 2015 IEEE Symposium Series on Computational Intelligence, SSCI 2015, 2015, p. 816-823.
I. Kadi et Idri, A., « A decision tree-based approach for cardiovascular dysautonomias diagnosis », in 2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, p. 816-823.
E. Y. Ghayam et Erradi, M., « Decision tree based context management in a collaborative environment1 », in NOTERE'10 - 10th Annual International Conference on New Technologies of Distributed Systems, 2010, p. 151-156.
M. Belhiah, Benqatla, M. S., et Bounabat, B., « Decision support system for implementing data quality projects », Communications in Computer and Information Science, vol. 584, p. 1-16, 2016.
M. Tamir, Chiheb, R., et Ouzayd, F., « A decision support platform based on cross-sorting methods for the selection of modeling methods: Case of the hospital supply chain performance analysis », International Journal of Advanced Computer Science and Applications, vol. 9, p. 475-484, 2018.
D. E. Majdoubi, Bakkali, H. E., Bensaih, M., et Sadki, S., « A Decentralized Trust Establishment Protocol for Smart IoT Systems », Internet of Things (Netherlands), vol. 20, 2022.

Pages

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:636,375
    Education - This is a contributing Drupal Theme
    Design by WeebPal.