Assessing the impact of parameters tuning in ensemble based breast Cancer classification

TitreAssessing the impact of parameters tuning in ensemble based breast Cancer classification
Publication TypeJournal Article
Year of Publication2020
AuthorsIdri, A, Bouchra, EO, Hosni, M, Abnane, I
JournalHealth and Technology
Volume10
Pagination1239-1255
Mots-clésaccuracy, Article, Breast Cancer, cancer classification, classifier, decision tree, experimental design, grid search, human, multilayer perceptron, particle swarm optimization, recall, support vector machine
Abstract

Breast cancer is one of the major causes of death among women. Different decision support systems were proposed to assist oncologists to accurately diagnose their patients. These decision support systems mainly used classification techniques to categorize the diagnosis into Malign or Benign tumors. Given that no consensus has been reached on the classifier that can perform best in all circumstances, ensemble-based classification, which classifies patients by combining more than one single classification technique, has recently been investigated. In this paper, heterogeneous ensembles based on three well-known machine learning techniques (support vector machines, multilayer perceptron, and decision trees) were developed and evaluated by investigating the impact of parameter values of the ensemble members on classification performance. In particular, we investigate three parameters tuning techniques: Grid Search (GS), Particle Swarm Optimization (PSO) and the default parameters of the Weka Tool to evaluate whether setting ensemble parameters permits more accurate classification in breast cancer over four datasets obtained from the Machine Learning repository. The heterogeneous ensembles of this study were built using the majority voting technique as a combination rule. The overall results obtained suggest that: (1) Using GS or PSO techniques for single techniques provide more accurate classification; (2) In general, ensembles generate more accurate classification than their single techniques regardless of the optimization techniques used. (3) Heterogeneous ensembles based on optimized single classifiers generate better results than the Uniform Configuration of Weka (UC-WEKA) ensembles, and (4) PSO and GS slightly have the same impact on the performances of ensembles. © 2020, IUPESM and Springer-Verlag GmbH Germany, part of Springer Nature.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087361107&doi=10.1007%2fs12553-020-00453-2&partnerID=40&md5=7398903f3007d71e535b12c2ef9a90a6
DOI10.1007/s12553-020-00453-2
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:631,444
    Education - This is a contributing Drupal Theme
    Design by WeebPal.