Cython for Speeding-up Genetic Algorithm

TitreCython for Speeding-up Genetic Algorithm
Publication TypeConference Paper
Year of Publication2020
AuthorsGad, AF, F. Jarmouni, E
Conference Name2020 International Conference on Electrical and Information Technologies, ICEIT 2020
Mots-clésArray elements, Array processing, Data type, Genetic algorithms, High level languages
Abstract

This paper proposes a library for implementing the genetic algorithm using Python mainly in NumPy and speeding-up its execution using Cython. The preliminary Python implementation is inspected for possible optimizations. The 4 main changes include statically defining data types for the NumPy arrays, specifying the data type of the array elements in addition to the number of dimensions, using indexing for looping through the arrays, and finally disabling some unnecessary features in Cython. Using Cython, the NumPy array processing is 1250 times faster than CPython. The Cythonized version of the genetic algorithm is 18 times faster than the Python version. © 2020 IEEE.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85086899207&doi=10.1109%2fICEIT48248.2020.9113210&partnerID=40&md5=2f21b7d3239af190e4a515e4e967104b
DOI10.1109/ICEIT48248.2020.9113210
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:635,548
    Education - This is a contributing Drupal Theme
    Design by WeebPal.