Dynamic adaptation of the ACS-TSP local pheromone decay parameter based on the Hidden Markov Model

TitreDynamic adaptation of the ACS-TSP local pheromone decay parameter based on the Hidden Markov Model
Publication TypeConference Paper
Year of Publication2017
AuthorsBouzbita, S, A. Afia, E, Faizi, R, Zbakh, M
Conference NameProceedings of 2016 International Conference on Cloud Computing Technologies and Applications, CloudTech 2016
Abstract

The objective of the present paper is to propose an improved Ant Colony System (ACS) algorithm based on a Hidden Markov Model (HMM) so as dynamically adapt the local pheromone decay parameter ξ. The proposed algorithm uses Iteration and Diversity as indicators of the hidden states in the search space in ACS. To test the efficiency of our algorithm, we experimented it on several benchmark Travelling Salesman Problem (TSP) instances. The results have proven the effectiveness of our algorithm in both the convergence speed and the solution quality. © 2016 IEEE.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85013861130&doi=10.1109%2fCloudTech.2016.7847719&partnerID=40&md5=26cafb2d23ee70bf2f3552d7fec22e8a
DOI10.1109/CloudTech.2016.7847719
Revues: 

Partenaires

Localisation


Location map

Suivez-nous sur

  

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

Résultat de recherche d'images pour "icone fax" Télécopie : (+212) 5 37 77 72 30

    Compteur de visiteurs:274,242
    Education - This is a contributing Drupal Theme
    Design by WeebPal.