Empirical Study: What is the Best N-Gram Graphical Indexing Technique

TitreEmpirical Study: What is the Best N-Gram Graphical Indexing Technique
Publication TypeJournal Article
Year of Publication2022
AuthorsRassam, L, Zellou, A, Rachad, T
JournalLecture Notes in Networks and Systems
Volume489 LNNS
Pagination387-398
Abstract

Recent research shows that indexing techniques, such as n-gram models, are useful at a wide variety of software engineering tasks, e.g., data extraction, document indexing, etc. However, these models require some numerous parameters. Moreover, the different ways one can extract data essentially yield different models. In this paper, we focus on n-gram models and evaluate how the use different set of methods and n values impact the predicting ability of these models. Thus, we compare the use of multiple techniques and sets of different parameters (n values character gram and word gram) with the aim of identifying the most appropriate indexing technique. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85135074852&doi=10.1007%2f978-3-031-07969-6_29&partnerID=40&md5=76e738e6a8c5330d57d78e968047e57f
DOI10.1007/978-3-031-07969-6_29
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:634,759
    Education - This is a contributing Drupal Theme
    Design by WeebPal.