On Multi-Label Classification for Non-Intrusive Load Identification using Low Sampling Frequency Datasets

TitreOn Multi-Label Classification for Non-Intrusive Load Identification using Low Sampling Frequency Datasets
Publication TypeConference Paper
Year of Publication2021
AuthorsAhajjam, MA, Essayeh, C, Ghogho, M, Kobbane, A
Conference NameConference Record - IEEE Instrumentation and Measurement Technology Conference
Mots-clésAggregate consumption, Classification (of information), Electric consumption, Load identification, Machine learning models, Measurement, Multi label classification, Non-intrusive, Nonintrusive load monitoring, Sampling frequencies
Abstract

Non-intrusive load monitoring (NILM) aims to infer information about the electric consumption of individual loads using the premises' aggregate consumption. In this work, we target supervised multi-label classification for non-intrusive load identification. We describe how we have created a new dataset from Moroccan households using a low sampling frequency. Then, we analyze the performance of three machine learning models for NILM, and investigate the impact of signal input length on performance. © 2021 IEEE.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85113709883&doi=10.1109%2fI2MTC50364.2021.9460059&partnerID=40&md5=2f6ca1a0b8790dce2a085d0e0ff10cf4
DOI10.1109/I2MTC50364.2021.9460059
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:634,759
    Education - This is a contributing Drupal Theme
    Design by WeebPal.