A New Hidden Markov Model Approach for Pheromone Level Exponent Adaptation in Ant Colony System

TitreA New Hidden Markov Model Approach for Pheromone Level Exponent Adaptation in Ant Colony System
Publication TypeJournal Article
Year of Publication2021
AuthorsBouzbita, S, Afia, AE, Faizi, R
JournalStudies in Computational Intelligence
Volume906
Pagination253-267
Abstract

We propose in this paper a Hidden Markov Model (HMM) approach to avoid premature convergence of ants in the Ant Colony System (ACS) algorithm. Indeed, the proposed approach was modelled as a classifier method to control the convergence through the dynamic adaptation of the α parameter that weighs the relative influence of the pheromone. The implementation was tested on several Travelling Salesman Problem (TSP) instances with different number of cities. The proposed approach was compared with the standard ACS and the existing fuzzy logic in the literature. The experimental results illustrate that the proposed method shows better performance. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097964733&doi=10.1007%2f978-3-030-58930-1_17&partnerID=40&md5=220c02fd7287bc58dc79db86db73282b
DOI10.1007/978-3-030-58930-1_17
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

Education - This is a contributing Drupal Theme
Design by WeebPal.