RBFN network based models for estimating software development effort: A cross-validation study

TitreRBFN network based models for estimating software development effort: A cross-validation study
Publication TypeConference Paper
Year of Publication2015
AuthorsIdri, Aa, Hassani, Aa, Abran, Ab
Conference NameProceedings - 2015 IEEE Symposium Series on Computational Intelligence, SSCI 2015

Software effort estimation is very crucial and there is always a need to improve its accuracy as much as possible. Several estimation techniques have been developed in this regard and it is difficult to determine which model gives more accurate estimation on which dataset. Among all proposed methods, the Radial Basis Function Neural (RBFN) networks models have presented promising results in software effort estimation. The main objective of this research is to evaluate the RBFN networks construction based on both hard and fuzzy C-means clustering algorithms using cross-validation approach. The objective of this replication study is to investigate if the RBFN-based models learned from the training data are able to estimate accurately the efforts of yet unseen data. This evaluation uses two historical datasets, namely COCOMO81 and ISBSG R8. © 2015 IEEE.




Suivez-nous sur




Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

 Télécopie : (+212) 5 37 77 72 30

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 70 77 02

        Service des affaires estudiantines : 06 62 44 87 47

        Résidences : 06 61 82 89 77


    Compteur de visiteurs:400,909
    Education - This is a contributing Drupal Theme
    Design by WeebPal.