Real-time Arabic scene text detection using fully convolutional neural networks

TitreReal-time Arabic scene text detection using fully convolutional neural networks
Publication TypeJournal Article
Year of Publication2021
AuthorsMoumen, R, Chiheb, R, Faizi, R
JournalInternational Journal of Electrical and Computer Engineering
Volume11
Pagination1634-1640
Abstract

The aim of this research is to propose a fully convolutional approach to address the problem of real-time scene text detection for Arabic language. Text detection is performed using a two-steps multi-scale approach. The first step uses light-weighted fully convolutional network: TextBlockDetector FCN, an adaptation of VGG-16 to eliminate non-textual elements, localize wide scale text and give text scale estimation. The second step determines narrow scale range of text using fully convolutional network for maximum performance. To evaluate the system, we confront the results of the framework to the results obtained with single VGG-16 fully deployed for text detection in one-shot; in addition to previous results in the state-of-the-art. For training and testing, we initiate a dataset of 575 images manually processed along with data augmentation to enrich training process. The system scores a precision of 0.651 vs 0.64 in the state-of-the-art and an FPS of 24.3 vs 31.7 for a VGG-16 fully deployed. © 2021 Institute of Advanced Engineering and Science. All rights reserved.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097836850&doi=10.11591%2fijece.v11i2.pp1634-1640&partnerID=40&md5=18f6883629a31b869bc0f2225a4cbf29
DOI10.11591/ijece.v11i2.pp1634-1640
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:634,789
    Education - This is a contributing Drupal Theme
    Design by WeebPal.