On the Sensitivity of LSTMs to Hyperparameters and Word Embeddings in the Context of Sentiment Analysis

TitreOn the Sensitivity of LSTMs to Hyperparameters and Word Embeddings in the Context of Sentiment Analysis
Publication TypeJournal Article
Year of Publication2022
AuthorsB. Haddaoui, E, Chiheb, R, Faizi, R, A. Afia, E
JournalLecture Notes in Networks and Systems
Volume489 LNNS
Pagination529-542
Abstract

Recurrent neural networks are still providing excellent results in sentiment analysis tasks, variants such as LSTM and Bidirectional LSTM have become a reference for building fast and accurate predictive models. However, such performance is difficult to obtain due to the complexity of the models and the hyperparameters choice. LSTM based models can easily overfit to the studied domain, and tuning the hyperparameters to get the desired model is the keystone of the training process. In this work, we provide a study on the sensitivity of a selection of LSTM based models to various hyperparameters and we highlight important aspects to consider while using similar models in the context of sentiment analysis. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85135093996&doi=10.1007%2f978-3-031-07969-6_40&partnerID=40&md5=695a2003d02e28d6d72df06cca749381
DOI10.1007/978-3-031-07969-6_40
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:636,015
    Education - This is a contributing Drupal Theme
    Design by WeebPal.