Improving text categorization: A fully automated ontology based approach

TitreImproving text categorization: A fully automated ontology based approach
Publication TypeConference Paper
Year of Publication2013
AuthorsMachhour, H, Kassou, I
Conference Name2013 3rd International Conference on Communications and Information Technology, ICCIT 2013
Abstract

This paper presents an improvement of text categorization models by document annotation with previously imported ontologies. A fully automated algorithm will be introduced to annotate plain text documents. Simple strategies combining annotation results with the categorization models are also presented and experienced. Conducted experiments present an improvement of tested categorization models when mixed with the annotation results. © 2013 IEEE.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84883898536&doi=10.1109%2fICCITechnology.2013.6579524&partnerID=40&md5=2216baabb84bdd7324b7ec625a4eba68
DOI10.1109/ICCITechnology.2013.6579524
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:635,124
    Education - This is a contributing Drupal Theme
    Design by WeebPal.