Intelligent system based support vector regression for supply chain demand forecasting

TitreIntelligent system based support vector regression for supply chain demand forecasting
Publication TypeConference Paper
Year of Publication2014
AuthorsSarhani, M, A. Afia, E
Conference Name2014 2nd World Conference on Complex Systems, WCCS 2014
Abstract

Supply chain management (SCM) is an emerging field that has commanded attention from different communities. On the one hand, the optimization of supply chain which is an important issue, requires a reliable prediction of future demand. On the other hand, It has been shown that intelligent systems and machine learning techniques are useful for forecasting in several applied domains. In this paper, we introduce the machine learning technique of time series forecasting Support Vector Regression (SVR) which is nowadays frequently used. Furthermore, we use the Particle Swarm Optimization (PSO) algorithm to optimize the SVR parameters. We investigate the accuracy of this approach for supply chain demand forecasting by applying it to a case study. © 2014 IEEE.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84929162457&doi=10.1109%2fICoCS.2014.7060941&partnerID=40&md5=8f615fc2cd27fff20b0220a543294e57
DOI10.1109/ICoCS.2014.7060941
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:635,124
    Education - This is a contributing Drupal Theme
    Design by WeebPal.