Breast Fine Needle Cytological Classification Using Deep Hybrid Architectures

TitreBreast Fine Needle Cytological Classification Using Deep Hybrid Architectures
Publication TypeJournal Article
Year of Publication2021
AuthorsZerouaoui, H, Idri, A, Nakach, FZ, Hadri, RE
JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12950 LNCS
Pagination186-202
Mots-clésBinary classification, Breast Cancer, Classification (of information), Classification performance, Cluster computing, Clustering algorithms, Computer aided diagnosis, Computer architecture, Convolutional neural networks, Deep neural networks, Diseases, Extraction, Feature extraction, Features extraction, Histological images, Hybrid architectures, Image classification, Images processing, Learning algorithms, Learning techniques, Medical imaging, MLP classifiers, Mortality rate, Network architecture, Support vector machines
Abstract

Diagnosis of breast cancer in the early stages allows to significantly decrease the mortality rate by allowing to choose the adequate treatment. This paper develops and evaluates twenty-eight hybrid architectures combining seven recent deep learning techniques for feature extraction (DenseNet 201, Inception V3, Inception ReseNet V2, MobileNet V2, ResNet 50, VGG16 and VGG19), and four classifiers (MLP, SVM, DT and KNN) for binary classification of breast cytological images over the FNAC dataset. To evaluate the designed architectures, we used: (1) four classification performance criterias (accuracy, precision, recall and F1-score), (1) Scott Knott (SK) statistical test to cluster the developed architectures and identify the best cluster of the outperforming architectures, and (2) Borda Count voting method to rank the best performing architectures. Results showed the potential of combining deep learning techniques for feature extraction and classical classifiers to classify breast cancer in malignant and benign tumors. The hybrid architectures using MLP classifier and DenseNet 201 for feature extraction were the top performing architectures with a higher accuracy value reaching 99% over the FNAC dataset. As results, the findings of this study recommend the use of the hybrid architectures using DenseNet 201 for the feature extraction of the breast cancer cytological images since it gave the best results for the FNAC data images, especially if combined with the MLP classifier. © 2021, Springer Nature Switzerland AG.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85125258661&doi=10.1007%2f978-3-030-86960-1_14&partnerID=40&md5=a4535504f03d3143ae1648f7edeb152c
DOI10.1007/978-3-030-86960-1_14
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:635,961
    Education - This is a contributing Drupal Theme
    Design by WeebPal.