Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits

TitreCryptanalysis of RSA Variants with Primes Sharing Most Significant Bits
Publication TypeJournal Article
Year of Publication2021
AuthorsCherkaoui-Semmouni, M, Nitaj, A, Susilo, W, Tonien, J
JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13118 LNCS
Pagination42-53
Mots-clésArtificial intelligence, Computers, Continued fraction, Coppersmith’s method, Cryptography, Lattice reduction, Most significant bit, Prime differences, Prime number, RSA cryptosystems, RSA moduli, RSA variant, S-method, Security of data
Abstract

We consider four variants of the RSA cryptosystem with an RSA modulus N= pq where the public exponent e and the private exponent d satisfy an equation of the form ed- k(p2- 1 ) (q2- 1 ) = 1. We show that, if the prime numbers p and q share most significant bits, that is, if the prime difference | p- q| is sufficiently small, then one can solve the equation for larger values of d, and factor the RSA modulus, which makes the systems insecure. © 2021, Springer Nature Switzerland AG.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85121867699&doi=10.1007%2f978-3-030-91356-4_3&partnerID=40&md5=c9be6e3c3f4c8ed53f31b0bad5cba512
DOI10.1007/978-3-030-91356-4_3
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

Education - This is a contributing Drupal Theme
Design by WeebPal.