ECG Arrhythmia Classification Using Convolutional Neural Network

TitreECG Arrhythmia Classification Using Convolutional Neural Network
Publication TypeJournal Article
Year of Publication2022
AuthorsAbdelhafid, E, Aymane, E, Benayad, N, Abdelalim, S, El, YAMH, Rachid, OHT, Brahim, B
JournalInternational Journal of Emerging Technology and Advanced Engineering
Volume12
Pagination186-195
Abstract

This study provides a thorough analysis of earlier DL techniques used to classify the ECG data. The large variability among individual patients and the high expense of labeling clinical ECG records are the main hurdles in automatically detecting arrhythmia by electrocardiogram (ECG). The classification of electrocardiogram (ECG) arrhythmias using a novel and more effective technique is presented in this research. A high-performance electrocardiogram (ECG)-based arrhythmic beats classification system is described in this research to develop a plan with an autonomous feature learning strategy and an effective optimization mechanism, based on the ECG heartbeat classification approach. We propose a method based on efficient 12-layer, the MIT-BIH Arrhythmia dataset's five micro-classes of heartbeat types and using the wavelet denoising technique. Compared to state-of-the-art approaches, the newly presented strategy enables considerable accuracy increase with quicker online retraining and less professional involvement. © 2022 IJETAE Publication House. All rights reserved.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85135368671&doi=10.46338%2fijetae0722_19&partnerID=40&md5=ffb72f915dc01aa63fb482762a1edeb3
DOI10.46338/ijetae0722_19
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:635,883
    Education - This is a contributing Drupal Theme
    Design by WeebPal.