Impact of Hyperparameters on the Generative Adversarial Networks Behavior

TitreImpact of Hyperparameters on the Generative Adversarial Networks Behavior
Publication TypeConference Paper
Year of Publication2022
AuthorsSabiri, B, Asri, B, Rhanoui, M
Conference NameInternational Conference on Enterprise Information Systems, ICEIS - Proceedings
Mots-clésCommon structures, Computer vision, Deep learning, Generative adversarial networks, Hyper-parameter, Image enhancement, Learning systems, Loss functions, Machine-learning, Network behaviors, Neural network model, Neural-networks, Unsupervised machine learning, Weighted Sum
Abstract

Generative adversarial networks (GANs) have become a full-fledged branch of the most important neural network models for unsupervised machine learning. A multitude of loss functions have been developed to train the GAN discriminators and they all have a common structure: a sum of real and false losses which depend only on the real losses and generated data respectively. A challenge associated with an equally weighted sum of two losses is that the formation can benefit one loss but harm the other, which we show causes instability and mode collapse. In this article, we introduce a new family of discriminant loss functions which adopts a weighted sum of real and false parts. With the use the gradients of the real and false parts of the loss, we can adaptively choose weights to train the discriminator in the sense that benefits the stability of the GAN model. Our method can potentially be applied to any discriminator model with a loss which is a sum of the real and fake parts. Our method consists in adjusting the hyper-parameters appropriately in order to improve the training of the two antagonistic models Experiences validated the effectiveness of our loss functions on image generation tasks, improving the base results by a significant margin on dataset Celebdata. Copyright © 2022 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85140905402&doi=10.5220%2f0011115100003179&partnerID=40&md5=a465ab3cd8d0650f9e310edf8a94d422
DOI10.5220/0011115100003179
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

    Compteur de visiteurs:634,776
    Education - This is a contributing Drupal Theme
    Design by WeebPal.