Machine Learning Approach for Smart Self-diagnosing Autonomic Computing Systems

TitreMachine Learning Approach for Smart Self-diagnosing Autonomic Computing Systems
Publication TypeJournal Article
Year of Publication2020
AuthorsKamri, H, Bounabat, B
JournalAdvances in Intelligent Systems and Computing
Volume1105 AISC
Pagination298-307
Mots-clésAutonomic Computing, Autonomic computing system, Diagnosing system, Intelligent systems, Learning systems, Machine learning, Machine learning approaches, Machine learning techniques, planning, Research initiatives, Self management, Self-diagnosing, Sustainable development, wireless networks
Abstract

While modern systems and networks are continuously growing in size, complexity and diversity, the monitoring and diagnosing of such systems is becoming a real challenge. Technically and economically, more automation of the classical diagnosing tasks is needed. This has triggered a considerable research initiative, grouped under the terms self-management and Autonomic Computing. In this paper we propose a new model for smart self-diagnosing systems based on Autonomic Computing principles and Machine Learning techniques. © 2020, Springer Nature Switzerland AG.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85080896883&doi=10.1007%2f978-3-030-36674-2_31&partnerID=40&md5=3dce8bc657338047166fb3ded16c10c8
DOI10.1007/978-3-030-36674-2_31
Revues: 

Partenaires

Localisation

Suivez-nous sur

         

    

Contactez-nous

ENSIAS

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal Rabat, Maroc

  Télécopie : (+212) 5 37 68 60 78

  Secrétariat de direction : 06 61 48 10 97

        Secrétariat général : 06 61 34 09 27

        Service des affaires financières : 06 61 44 76 79

        Service des affaires estudiantines : 06 62 77 10 17 / n.mhirich@um5s.net.ma

        CEDOC ST2I : 06 66 39 75 16

        Résidences : 06 61 82 89 77

Contacts

    

Education - This is a contributing Drupal Theme
Design by WeebPal.